赵志成:求∫1/√(1+x2)dx
陈沐涵的回答:
∫dx/√(1+x^2) let x= tany dx = (secy)^2 dy ∫dx/√(1+x^2) =∫dy =y+ C =arctanx + C
伤心小男孩的回答:
∫1/[x2√(1+x2)] dx =∫[(x2+1)-x2]/[x2√(1+x2)] dx =∫1/x2dx-∫1/(x2+1)dx =-1/x-arctanx+c
经验分享互联网动态
更多阅读推荐
∫dx/√(1+x^2) let x= tany dx = (secy)^2 dy ∫dx/√(1+x^2) =∫dy =y+ C =arctanx + C
∫1/[x2√(1+x2)] dx =∫[(x2+1)-x2]/[x2√(1+x2)] dx =∫1/x2dx-∫1/(x2+1)dx =-1/x-arctanx+c