只需一步,快速开始
2020-8-12 12:43| 发布者: admin| 查看: 85| 评论: 0
∫dx/√(1+x^2) let x= tany dx = (secy)^2 dy ∫dx/√(1+x^2) =∫dy =y+ C =arctanx + C
∫1/[x2√(1+x2)] dx =∫[(x2+1)-x2]/[x2√(1+x2)] dx =∫1/x2dx-∫1/(x2+1)dx =-1/x-arctanx+c
评论
广告服务|投稿要求|禁言标准|版权说明|免责声明|手机版|小黑屋|推扬网 ( 粤ICP备18134897号 )|网站地图 | 邮箱:vayae@hotmail.com
GMT+8, 2025-5-1 20:25 , Processed in 0.278225 second(s), 28 queries .
Powered by Discuz! X3.4
© 2001-2017 Comsenz Inc.