去评论
推扬网

朱太:全等三角形奥数题 全等三角形奥数题或超难题

admin
2020/08/10 20:26:01

许青山的回答:

此题目不是一般的难! 如果一个三角形两个角的角平分线相等,试证明这个三角形为等腰三角形. 设三角形为ABC,CD、BE分别是角平分线,证明:ABC是等腰三角形? 证明: 作∠BEF=∠BCD;并使EF=BC ∵BE=DC ∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF 设∠ABE=∠EBC=α,∠ACD=∠DCB=β ∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β); ∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β); ∴∠FBC=∠CEF ∵2α+2β<180°,∴α+β<90° ∴∠FBC=∠CEF>90° ∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上. 设垂足分别为G、H; ∠HEF=∠CBG; ∵BC=EF, ∴Rt△CGB≌Rt△FHE ∴CG=FH,BC=HE 连接CF ∵CF=FC,FH=CG ∴Rt△CGF≌△FHC ∴FG=CH,∴BF=CE,∴CE=BD ∵BD=CE,BC=CB,∴△BDC≌△CEB ∴∠ABC=∠ACB ∴AB=AC

谢志成的回答:

此题目不是一般的难! 如果一个三角形两个角的角平分线相等,试证明这个三角形为等腰三角形. 设三角形为ABC,CD、BE分别是角平分线,证明:ABC是等腰三角形? 证明: 作∠BEF=∠BCD;并使EF=BC ∵BE=DC ∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF 设∠ABE=∠EBC=α,∠ACD=∠DCB=β ∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β); ∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β); ∴∠FBC=∠CEF ∵2α+2β<180°,∴α+β<90° ∴∠FBC=∠CEF>90° ∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上. 设垂足分别为G、H; ∠HEF=∠CBG; ∵BC=EF, ∴Rt△CGB≌Rt△FHE ∴CG=FH,BC=HE 连接CF ∵CF=FC,FH=CG ∴Rt△CGF≌△FHC ∴FG=CH,∴BF=CE,∴CE=BD ∵BD=CE,BC=CB,∴△BDC≌△CEB ∴∠ABC=∠ACB ∴AB=AC

孟鸽的回答:

此题目不是一般的难! 如果一个三角形两个角的角平分线相等,试证明这个三角形为等腰三角形. 设三角形为ABC,CD、BE分别是角平分线,证明:ABC是等腰三角形? 证明: 作∠BEF=∠BCD;并使EF=BC ∵BE=DC ∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF 设∠ABE=∠EBC=α,∠ACD=∠DCB=β ∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β); ∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β); ∴∠FBC=∠CEF ∵2α+2β<180°,∴α+β<90° ∴∠FBC=∠CEF>90° ∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上. 设垂足分别为G、H; ∠HEF=∠CBG; ∵BC=EF, ∴Rt△CGB≌Rt△FHE ∴CG=FH,BC=HE 连接CF ∵CF=FC,FH=CG ∴Rt△CGF≌△FHC ∴FG=CH,∴BF=CE,∴CE=BD ∵BD=CE,BC=CB,∴△BDC≌△CEB ∴∠ABC=∠ACB ∴AB=AC