scikit-learn线性回归,多元回归,多项式回归的实现
这篇文章主要介绍了scikit-learn线性回归,多元回归,多项式回归的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
匹萨的直径与价格的数据
[code]%matplotlib inline import matplotlib.pyplot as plt def runplt(): plt.figure() plt.title(u'diameter-cost curver') plt.xlabel(u'diameter') plt.ylabel(u'cost') plt.axis([0, 25, 0, 25]) plt.grid(True) return plt plt = runplt() X = [[6], [8], [10], [14], [18]] y = [[7], [9], [13], [17.5], [18]] plt.plot(X, y, 'k.') plt.show()[/code]
训练模型
[code]from sklearn.linear_model import LinearRegression import numpy as np # 创建并拟合模型 model = LinearRegression() model.fit(X, y) print('预测一张12英寸匹萨价格:$%.2f' % model.predict(np.array([12]).reshape(-1, 1))[0])[/code]
预测一张12英寸匹萨价格:$13.68
一元线性回归假设解释变量和响应变量之间存在线性关系;这个线性模型所构成的空间是一个超平面(hyperplane)。
超平面是n维欧氏空间中余维度等于一的线性子空间,如平面中的直线、空间中的平面等,总比包含它的空间少一维。
在一元线性回归中,一个维度是响应变量,另一个维度是解释变量,总共两维。因此,其超平面只有一维,就是一条线。
上述代码中sklearn.linear_model.LinearRegression类是一个估计器(estimator)。估计器依据观测值来预测结果。在scikit-learn里面,所有的估计器都带有:
- fit()
- predict()
fit()用来分析模型参数,predict()是通过fit()算出的模型参数构成的模型,对解释变量进行预测获得的值。
因为所有的估计器都有这两种方法,所有scikit-learn很容易实验不同的模型。
一元线性回归模型:
y=α+βx
一元线性回归拟合模型的参数估计常用方法是:
- 普通最小二乘法(ordinary least squares )
- 线性最小二乘法(linear least squares)
首先,我们定义出拟合成本函数,然后对参数进行数理统计。
[code]plt = runplt() plt.plot(X, y, 'k.') X2 = [[0], [10], [14], [25]] model = LinearRegression() model.fit(X, y) y2 = model.predict(X2) plt.plot(X, y, 'k.') plt.plot(X2, y2, 'g-') plt.show() [/code]
[code]plt = runplt() plt.plot(X, y, 'k.') y3 = [14.25, 14.25, 14.25, 14.25] y4 = y2 * 0.5 + 5 model.fit(X[1:-1], y[1:-1]) y5 = model.predict(X2) plt.plot(X, y, 'k.') plt.plot(X2, y2, 'g-.') plt.plot(X2, y3, 'r-.') plt.plot(X2, y4, 'y-.') plt.plot(X2, y5, 'o-') plt.show()[/code]
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(training errors)。后面我们会用模型计算测试集,那时模型预测的价格与测试集数据的差异称为预测误差(prediction errors)或训练误差(test errors)。
模型的残差是训练样本点与线性回归模型的纵向距离,如下图所示:
[code]plt = runplt() plt.plot(X, y, 'k.') X2 = [[0], [10], [14], [25]] model = LinearRegression() model.fit(X, y) y2 = model.predict(X2) plt.plot(X, y, 'k.') plt.plot(X2, y2, 'g-') # 残差预测值 yr = model.predict(X) for idx, x in enumerate(X): plt.plot([x, x], [y[idx], yr[idx]], 'r-') plt.show()[/code]
我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合。对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数。就是让所有训练数据与模型的残差的平方之和最小化,如下所示:
[code][[6], [8], [10], [14], [18]] [[ 1. 6. 36.] [ 1. 8. 64.] [ 1. 10. 100.] [ 1. 14. 196.] [ 1. 18. 324.]] [[6], [8], [11], [16]] [[ 1. 6. 36.] [ 1. 8. 64.] [ 1. 11. 121.] [ 1. 16. 256.]] ('1 r-squared', 0.80972683246686095) ('2 r-squared', 0.86754436563450732)[/code]
[code]plt = runplt() plt.plot(X_train, y_train, 'k.') quadratic_featurizer = PolynomialFeatures(degree=2) X_train_quadratic = quadratic_featurizer.fit_transform(X_train) X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression() regressor_quadratic.fit(X_train_quadratic, y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1)) plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-') cubic_featurizer = PolynomialFeatures(degree=3) X_train_cubic = cubic_featurizer.fit_transform(X_train) X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression() regressor_cubic.fit(X_train_cubic, y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0], 1)) plt.plot(xx, regressor_cubic.predict(xx_cubic)) plt.show() print(X_train_cubic) print(X_test_cubic) print('2 r-squared', regressor_quadratic.score(X_test_quadratic, y_test)) print('3 r-squared', regressor_cubic.score(X_test_cubic, y_test))[/code]
[code][[ 1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02] [ 1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02] [ 1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03] [ 1.00000000e+00 1.40000000e+01 1.96000000e+02 2.74400000e+03] [ 1.00000000e+00 1.80000000e+01 3.24000000e+02 5.83200000e+03]] [[ 1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02] [ 1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02] [ 1.00000000e+00 1.10000000e+01 1.21000000e+02 1.33100000e+03] [ 1.00000000e+00 1.60000000e+01 2.56000000e+02 4.09600000e+03]] ('2 r-squared', 0.86754436563450732) ('3 r-squared', 0.83569241560369567)[/code]
[code]plt = runplt() plt.plot(X_train, y_train, 'k.') quadratic_featurizer = PolynomialFeatures(degree=2) X_train_quadratic = quadratic_featurizer.fit_transform(X_train) X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression() regressor_quadratic.fit(X_train_quadratic, y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1)) plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-') seventh_featurizer = PolynomialFeatures(degree=7) X_train_seventh = seventh_featurizer.fit_transform(X_train) X_test_seventh = seventh_featurizer.transform(X_test) regressor_seventh = LinearRegression() regressor_seventh.fit(X_train_seventh, y_train) xx_seventh = seventh_featurizer.transform(xx.reshape(xx.shape[0], 1)) plt.plot(xx, regressor_seventh.predict(xx_seventh)) plt.show() print('2 r-squared', regressor_quadratic.score(X_test_quadratic, y_test)) print('7 r-squared', regressor_seventh.score(X_test_seventh, y_test))[/code]
[code]('2 r-squared', 0.86754436563450732) ('7 r-squared', 0.49198460568655)[/code]
可以看出,七次拟合的R方值更低,虽然其图形基本经过了所有的点。可以认为这是拟合过度(over-fitting)的情况。这种模型并没有从输入和输出中推导出一般的规律,而是记忆训练集的结果,这样在测试集的测试效果就不好了。
正则化
LASSO方法会产生稀疏参数,大多数相关系数会变成0,模型只会保留一小部分特征。而岭回归还是会保留大多数尽可能小的相关系数。当两个变量相关时,LASSO方法会让其中一个变量的相关系数会变成0,而岭回归是将两个系数同时缩小。
[code]import numpy as np from sklearn.datasets import load_boston from sklearn.linear_model import SGDRegressor from sklearn.cross_validation import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split data = load_boston() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) X_scaler = StandardScaler() y_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) y_train = y_scaler.fit_transform(y_train.reshape(-1, 1)) X_test = X_scaler.transform(X_test) y_test = y_scaler.transform(y_test.reshape(-1, 1)) regressor = SGDRegressor(loss='squared_loss',penalty="l1") scores = cross_val_score(regressor, X_train, y_train.reshape(-1, 1), cv=5) print('cv R', scores) print('mean of cv R', np.mean(scores)) regressor.fit_transform(X_train, y_train) print('Test set R', regressor.score(X_test, y_test))[/code]
('cv R', array([ 0.74761441, 0.62036841, 0.6851797 , 0.63347999, 0.79476346]))
('mean of cv R', 0.69628119572104885)
('Test set R', 0.75084948718041566)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持