去评论
推扬网

赵津:一道初中四边形难题

admin
2020/08/11 18:33:58

英雄の黎明的回答:

过B作BG//EF交DC延长线与G 过B作BH//MN交AD与H 可证,BG=EF,BH=MN,平行四边形对边相等 然后可以证出,三角形BCG和三角形BAH全等(ASA) 所以MN=EF

英雄の黎明的回答:

过B作BG//EF交DC延长线与G 过B作BH//MN交AD与H 可证,BG=EF,BH=MN,平行四边形对边相等 然后可以证出,三角形BCG和三角形BAH全等(ASA) 所以MN=EF

风吹竹叶舞的回答:

作EG垂直于AB MH垂直于BC 显然EG=MH <FEG=<NMH 三角形EFG全等于三角形NMH MN=EF

雨水如溪的回答:

过E做EH⊥AB交AB于H,过N做NG⊥AD并交AD于G ,因为ABCD为正方形,所以EH=NG,若EF⊥MN垂足为O 又因为∠EFB=∠NMA(在四边形AFOM中,∠EFB是它的一个外角,就等于和它不相邻的内角∠NMA) 所以三角形EFH全等于三角形MNG,则EF=MN