推扬网

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
推扬网 门户 你问我答 查看内容

高艳艳:勾股定理证明方法

2020-8-10 20:20| 发布者: admin| 查看: 68| 评论: 0

摘要: 传じ☆ve说的回答: 伽菲尔德证明勾股定理的故事  1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近 ...

传じ☆ve说的回答:

伽菲尔德证明勾股定理的故事  1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

  如下:

  解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。

  勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,

  a的平方+b的平方=c的平方;

  说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理称为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。

  举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;= a的平方+b的平方=9+16=25即c=5

  则说明斜边为5。

[编辑本段]勾股定理的多种证明方法

  这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。

  有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

证法1(梅文鼎证明)

  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.

  ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

  ∴ ∠EGF = ∠BED,

  ∵ ∠EGF + ∠GEF = 90°,

  ∴ ∠BED + ∠GEF = 90°,

  ∴ ∠BEG =180°―90°= 90°

  又∵ AB = BE = EG = GA = c,

  ∴ ABEG是一个边长为c的正方形.

  ∴ ∠ABC + ∠CBE = 90°

  ∵ RtΔABC ≌ RtΔEBD,

  ∴ ∠ABC = ∠EBD.

  ∴ ∠EBD + ∠CBE = 90°

  即 ∠CBD= 90°

  又∵ ∠BDE = 90°,∠BCP = 90°,

  BC = BD = a.

  ∴ BDPC是一个边长为a的正方形.

  同理,HPFG是一个边长为b的正方形.

  设多边形GHCBE的面积为S,则

  ,

  ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2

 

证法2(项明达证明)

  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

  过点Q作QP∥BC,交AC于点P.

  过点B作BM⊥PQ,垂足为M;再过点

  F作FN⊥PQ,垂足为N.

  ∵ ∠BCA = 90°,QP∥BC,

  ∴ ∠MPC = 90°,

  ∵ BM⊥PQ,

  ∴ ∠BMP = 90°,

  ∴ BCPM是一个矩形,即∠MBC = 90°.

  ∵ ∠QBM + ∠MBA = ∠QBA = °,

  ∠ABC + ∠MBA = ∠MBC = 90°,

  ∴ ∠QBM = ∠ABC,

  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

  ∴ RtΔBMQ ≌ RtΔBCA.

  同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2

证法3(赵浩杰证明)

  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.

  分别以CF,AE为边长做正方形FCJI和AEIG,

  ∵EF=DF-DE=b-a,EI=b,

  ∴FI=a,

  ∴G,I,J在同一直线上,

  ∵CJ=CF=a,CB=CD=c,

  ∠CJB = ∠CFD = 90°,

  ∴RtΔCJB ≌ RtΔCFD ,

  同理,RtΔABG ≌ RtΔADE,

  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

  ∴∠ABG = ∠BCJ,

  ∵∠BCJ +∠CBJ= 90°,

  ∴∠ABG +∠CBJ= 90°,

  ∵∠ABC= 90°,

  ∴G,B,I,J在同一直线上,

  所以a^2+b^2=c^2

证法4(欧几里得证明)

  作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

  BF、CD. 过C作CL⊥DE,

  交AB于点M,交DE于点L.

  ∵ AF = AC,AB = AD,

  ∠FAB = ∠GAD,

  ∴ ΔFAB ≌ ΔGAD,

  ∵ ΔFAB的面积等于,

  ΔGAD的面积等于矩形ADLM

  的面积的一半,

  ∴ 矩形ADLM的面积 =.

  同理可证,矩形MLEB的面积 =.

  ∵ 正方形ADEB的面积

  = 矩形ADLM的面积 + 矩形MLEB的面积

  ∴ 即a的平方+b的平方=c的平方

 

【证法6】(欧几里德(Euclid)射影定理证法)

  如图1,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:

  1)(BD)^2;=AD·DC, (2)(AB)^2;=AD·AC , (3)(BC)^2;=CD·AC 。

  由公式(2)+(3)得:

  (AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,

  即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。

传じ☆ve说的回答:

伽菲尔德证明勾股定理的故事  1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

  如下:

  解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。

  勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,

  a的平方+b的平方=c的平方;

  说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理称为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。

  举例:如直角三角形的两个直角边分别为3、4,则斜边c的平方;= a的平方+b的平方=9+16=25即c=5

  则说明斜边为5。

[编辑本段]勾股定理的多种证明方法

  这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。

  有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

证法1(梅文鼎证明)

  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.

  ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

  ∴ ∠EGF = ∠BED,

  ∵ ∠EGF + ∠GEF = 90°,

  ∴ ∠BED + ∠GEF = 90°,

  ∴ ∠BEG =180°―90°= 90°

  又∵ AB = BE = EG = GA = c,

  ∴ ABEG是一个边长为c的正方形.

  ∴ ∠ABC + ∠CBE = 90°

  ∵ RtΔABC ≌ RtΔEBD,

  ∴ ∠ABC = ∠EBD.

  ∴ ∠EBD + ∠CBE = 90°

  即 ∠CBD= 90°

  又∵ ∠BDE = 90°,∠BCP = 90°,

  BC = BD = a.

  ∴ BDPC是一个边长为a的正方形.

  同理,HPFG是一个边长为b的正方形.

  设多边形GHCBE的面积为S,则

  ,

  ∴ BDPC的面积也为S,HPFG的面积也为S由此可推出:a^2+b^2=c^2

 

证法2(项明达证明)

  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

  过点Q作QP∥BC,交AC于点P.

  过点B作BM⊥PQ,垂足为M;再过点

  F作FN⊥PQ,垂足为N.

  ∵ ∠BCA = 90°,QP∥BC,

  ∴ ∠MPC = 90°,

  ∵ BM⊥PQ,

  ∴ ∠BMP = 90°,

  ∴ BCPM是一个矩形,即∠MBC = 90°.

  ∵ ∠QBM + ∠MBA = ∠QBA = °,

  ∠ABC + ∠MBA = ∠MBC = 90°,

  ∴ ∠QBM = ∠ABC,

  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

  ∴ RtΔBMQ ≌ RtΔBCA.

  同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2

证法3(赵浩杰证明)

  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.

  分别以CF,AE为边长做正方形FCJI和AEIG,

  ∵EF=DF-DE=b-a,EI=b,

  ∴FI=a,

  ∴G,I,J在同一直线上,

  ∵CJ=CF=a,CB=CD=c,

  ∠CJB = ∠CFD = 90°,

  ∴RtΔCJB ≌ RtΔCFD ,

  同理,RtΔABG ≌ RtΔADE,

  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

  ∴∠ABG = ∠BCJ,

  ∵∠BCJ +∠CBJ= 90°,

  ∴∠ABG +∠CBJ= 90°,

  ∵∠ABC= 90°,

  ∴G,B,I,J在同一直线上,

  所以a^2+b^2=c^2

证法4(欧几里得证明)

  作三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

  BF、CD. 过C作CL⊥DE,

  交AB于点M,交DE于点L.

  ∵ AF = AC,AB = AD,

  ∠FAB = ∠GAD,

  ∴ ΔFAB ≌ ΔGAD,

  ∵ ΔFAB的面积等于,

  ΔGAD的面积等于矩形ADLM

  的面积的一半,

  ∴ 矩形ADLM的面积 =.

  同理可证,矩形MLEB的面积 =.

  ∵ 正方形ADEB的面积

  = 矩形ADLM的面积 + 矩形MLEB的面积

  ∴ 即a的平方+b的平方=c的平方

 

【证法6】(欧几里德(Euclid)射影定理证法)

  如图1,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:

  1)(BD)^2;=AD·DC, (2)(AB)^2;=AD·AC , (3)(BC)^2;=CD·AC 。

  由公式(2)+(3)得:

  (AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,

  即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。


鲜花

握手

雷人

路过

鸡蛋

最新评论

热门推荐
最新资讯

广告服务|投稿要求|禁言标准|版权说明|免责声明|手机版|小黑屋|推扬网 ( 粤ICP备18134897号 )|网站地图 | 邮箱:vayae@hotmail.com

GMT+8, 2025-5-1 16:53 , Processed in 0.062408 second(s), 29 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

返回顶部