推扬网

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
推扬网 门户 经验分享 查看内容

笛卡尔乘积介绍

2020-4-11 13:38| 发布者: admin| 查看: 840| 评论: 0

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

在数学中,两个集合 X 和 Y 的笛卡儿积(Cartesian product),又称直积,表示为 X × Y,是其第一个对象是 X 的成员而第二个对象是 Y 的一个成员的所有可能的有序对:

X\times Y = \{(x,y) \ | \ x\in X\;\land\;y\in Y\}

笛卡儿积得名于笛卡儿,他的解析几何的公式化引发了这个概念。

具体的说,如果集合 X 是 13 个元素的点数集合 { AKQJ, 10, 9, 8, 7, 6, 5, 4, 3, 2 } 而集合 Y 是 4 个元素的花色集合 {♠, ♥, ♦, ♣},则这两个集合的笛卡儿积是 52 个元素的标准扑克牌的集合 { (A, ♠), (K, ♠), ..., (2, ♠), (A, ♥), ..., (3, ♣), (2, ♣) }。

目录
  • 1 笛卡儿积的性质
  • 2 笛卡儿平方和 n-元乘积
  • 3 无穷乘积
  • 4 函数的笛卡儿积
  • 5 外部链接
  • 6 参见 笛卡儿积的性质

易见笛卡儿积满足下列性质:

  • 对于任意集合 A,根据定义有 A \times \varnothing = \varnothing \times A = \varnothing
  • 一般来说笛卡儿积不满足交换律和结合律。
  • 笛卡儿积对集合的并和交满足分配律,即

A \times (B \cup C) = (A \times B) \cup (A \times C)

(B \cup C) \times A = (B \times A) \cup (C \times A)

A \times (B \cap C) = (A \times B) \cap (A \times C)

(B \cap C) \times A = (B \times A) \cap (C \times A)

(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)

笛卡儿平方和 n-元乘积

集合 X 的笛卡儿平方(或二元笛卡儿积)是笛卡儿积 X × X。一个例子是二维平面 R × R,这里 R 是实数的集合 - 所有的点 (x,y),这里的 x 和 y 是实数(参见笛卡儿坐标系)。

可以推广出在 n 个集合 X1, ..., Xn 上的 n-元笛卡儿积:

X_1\times\ldots\times X_n = \{(x_1, \ldots, x_n) \ | \ x_1\in X_1\;\land\;\ldots\;\land\;x_n\in X_n\}

实际上,它可以被认同为 (X1 × ... × Xn-1) × Xn。它也是 n-元组的集合。

一个例子是欧几里得三维空间 R × R × R,这里的 R 再次是实数的集合。

为了辅助它的计算,可绘制一个表格。一个集合作为行而另一个集合作为列,从行和列的集合选择元素形成有序对作为表的单元格。

无穷乘积

对最常用的数学应用而言上述定义通常就是所需要的全部。但是有可能在任意(可能无限)的集合的搜集上定义笛卡儿积。如果 I 是任何指标集合,而

\{X_i\ | i \in I\}

是由 I 索引的集合的搜集,则我们定义

\prod_{i \in I} X_i = \{ f : I \to \bigcup_{i \in I} X_i\ |\ (\forall i)(f(i) \in X_i)\}

就是定义在索引集合上的所有函数的集合,使得这些函数在特定索引 i 上的值是 Xi  的元素。

对在 I 中每个 j,定义自

 \pi_{j}(f) = f(j) \

的函数

 \pi_{j} : \prod_{i \in I} X_i \to X_{j} \

叫做第 j 投影映射

n-元组可以被看作在 {1, 2, ..., n} 上的函数,它在 i 上的值是这个元组的第 i 个元素。所以,在 I 是 {1, 2, ..., n} 的时候这个定义一致于对有限情况的定义。在无限情况下这个定义是集合族。

特别熟悉的一个无限情况是在索引集合是自然数的集合 \mathbb N, 的时候: 这正是其中第 i 项对应于集合 Xi  的所有无限序列的集合。再次,\mathbb R 提供了这样的一个例子:

\prod_{n = 1}^\infty \mathbb R =\mathbb{R}^\omega= \mathbb R \times \mathbb R \times \ldots

是实数的无限序列的搜集,并且很容易可视化为带有有限数目构件的向量或元组。另一个特殊情况(上述例子也满足它)是在乘积涉及因子 Xi 都是相同的时候,类似于“笛卡儿指数”。则在定义中的无限并集自身就是这个集合自身,而其他条件被平凡的满足了,所以这正是从 I 到 X 的所有函数的集合。

此外,无限笛卡儿积更少直觉性,尽管有应用于高级数学的价值。

断言非空集合的任意非空搜集的笛卡儿积为非空等价于选择公理。

函数的笛卡儿积

如果 f 是从 A 到 B 的函数而 g 是从 X 到 Y 的函数,则它们的笛卡儿积 f×g 是从 A×X 到 B×Y 的函数,带有

(f\times g)(a, x) = (f(a), g(x))

上述可以被扩展到函数的元组和无限指标。


鲜花

握手

雷人

路过

鸡蛋

最新评论

精选推荐

    广告服务|投稿要求|禁言标准|版权说明|免责声明|手机版|小黑屋|推扬网 ( 粤ICP备18134897号 )|网站地图 | 邮箱:vayae@hotmail.com

    GMT+8, 2024-3-29 02:21 , Processed in 0.361498 second(s), 28 queries .

    Powered by Discuz! X3.4

    © 2001-2017 Comsenz Inc.

    返回顶部