任艳的回答:如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f?1(x)y=f?1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且
[f?1(x)]′=1f′(y)或dydx=1dxdy
[f?1(x)]′=1f′(y)或dydx=1dxdy
这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。
例:?
设x=siny,y∈[?π2,π2]x=sin?y,y∈[?π2,π2]为直接导数,则y=arcsinxy=arcsin?x是它的反函数,求反函数的导数.?
解:函数x=sinyx=sin?y在区间内单调可导,f′(y)=cosy≠0f′(y)=cos?y≠0?
因此,由公式得
(arcsinx)′=1(siny)′
(arcsin?x)′=1(sin?y)′
=1cosy=11?sin2y????????√=11?x2?????√
=1cos?y=11?sin2?y=11?x2
如果在求解过程中遇到不好直接求出的三角函数,可以使用画三角形法求解
设
黄鸿明的回答:
张玉春的回答:y=f(x) 要求d^2x/dy^2 dx/dy=1/(dy/dx)=1/y' d^2x/dy^2=d(dx/dy)/dx*dx/dy =-y''/y'^2*1/y' =-y''/y'^3 |