刘漫漫的回答:解:∵△ACE≌△A'EC ∴AC=A'C,∠ACE=∠A'CE=90° ∵BD⊥AD ∴EC∥BD ∴△ACE∽△ADB ∴EC/BD=AC/AD ∵AC=CA'=A'D ∴AC/AD=1/3 ∴EC=BD/3 =6/3=2 仲一的回答:解:∵△ACE≌△A'EC ∴AC=A'C,∠ACE=∠A'CE=90° ∵BD⊥AD ∴EC∥BD ∴△ACE∽△ADB ∴EC/BD=AC/AD ∵AC=CA'=A'D ∴AC/AD=1/3 ∴EC=BD/3 =6/3=2 好名字都被**起了的回答:证明如下 ∵EF⊥AC ∴∠AEF=90° 又∵∠ACB=90° ∴EF‖CB ∴∠DCB=∠F ∵CD⊥AB ∴∠DCB+∠B=90° 又∵∠ACB=90° ∴∠A+∠B=90° ∴∠DCB=∠A ∵∠DCB=∠F ∠DCB=∠A ∴∠F=∠A 在△ACB与△FEC中 ∠A=∠F ∠ACB=∠FEC CB=CE ∴△ACB≌△FEC(AAS) ∴AB=FC Otherworldly Father?的回答:∵角ACE=90度, ∴△ACE∽△ADB. 又∵AC=CA撇=DA撇, ∴CE=1/3BD=2. |